728x90 검증1 [ML] 모델의 평가와 검증 (Test, Evaluation) 모델이 새로운 데이터에 대해서 제대로 작동하는지 알기 위해서는 실제로 새로운 데이터에 대해서 작동시켜보아야 합니다. 배포를 하기 전에 새로운 데이터에 대한 정확도를 평가하기 위해서는,가지고 있는 데이터셋을 Training Set과 Test Set으로 나누어야 합니다. Training Set을 사용해서 모델을 학습시킨 다음에 Test Set에서 시험을 한번 해보는 것입니다. 새로운 데이터들에 대해서 발생하는 오차 값은 Generalization Error (out-of-sample error)라고 부르며, 이 값이 낮을수록 모델이 새로운 데이터에 대해서도 성능이 좋다는 것을 의미합니다. 만약 training error(Training Set에 대한 오류)는 낮은데 generalization error가 .. 2024. 7. 26. 이전 1 다음 반응형